222/ SOLUTIONS

having an even number of circles (with 2k points on both the A and the B circles,
and ¢ running from 1 to 2k — 1) : the points Aak, A1, By, Boi must also lie on a
circle.

For the second claim we will see that the sides of the hexagon C;CyC3C,C5Cy are
tangent to a conic whose foci are the centres, call them A and B, of the circles A4;
and B; ; by Brianchon’s theorem, the lines joining opposite vertices of the hexagon,
namely C1Cy, C2C5, and C3Cg, must be concurrent. To this end, we wish to show
that for each 4, the unique conic with foci A and B that is tangent to the line
C;C;—1 (joining the centres of consecutive circles) coincides with the unique conic
with those foci that is tangent to the line C;C;41. Note that the conic will be an
ellipse if the tangent C;C; 1 misses the line segment AB; it is a hyperbola if the
tangent intersects AB between A and B. (To avoid the line passing through A or
B we should insist that none of the A; lie on the circle containing the B;, and vice
versa.) The second claim thereby reduces to a theorem that seems as if it should
have been known a century ago, for which it seems to be easier to find a proof
than a reference. The editor J. Chris Fisher now poses this proof as problem 3945,
which appears in this issue of Cruz.

3846. Proposed by Arkady Alt.
Let r be a positive real number. Prove that the inequality

1 1 1 3
>
1+a—|—0z2+1—|—b-|—b2+1-|—c—|-c2 T 1l+r+02

holds for any positive a, b, ¢ such that abc = r? if and only if r > 1.
We present the proof by the proposer, modified and expanded by the editor.
We first prove the following lemma :

Lemma. Let r be a given positive number. Then

1 1 2
>

1
1+a+a2+1+b+b2_1+r+r2 (1)

for any positive a and b with ab = r? if and only if » > ry, where r( is the unique
positive root of the equation 423 + 322 — 32— 1 =0.

[Editor : Let f(z) = 42® + 32?2 — 3z — 1. Then f(0) = —1 < 0 and f(1) =3 > 0,
so f has a real root ro € (0,1). By Rule of signs, g is the only positive root.]

Proof. Note that if (1) holds for any positive a and b with ab = 72, then

1 1 2
e \Trata®  11b10 Tl

5—1
if and only if 72 4+ —1>0, so r > \/_2 .
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5-—1
Now, suppose a,b > 0 with ab = r2, where r > \/_2 . Let z = a + b, then

xr > 2vab = 2r, and

1 1 2
Ttata " T1b1 02 Thrir

24+a+b+a®+0b? 2
1+a+b+ab+abla+b)+a2+02+a2? 1+r+1r2
242+ a2 —2r? 2
L+a+r2+ () +a2—20r2) +r+ 147412

B 22 +r+2—2r2 2

T 24 r2n 4 — 24t 41 1442
_ P(2)

- Q(x)’

where Q(7) = (22 +r2z+z—r?+7r*+1)(1+7+r?) and by tedious computations
together with synthetic division, we have :

Pla) =

2t ax4+2-2HA4+r+r?) =2 + e+ -2 Frt41)

2 tr— Dzt + (—r*+r =Dz +201 =) +r+1) =201 —r2 +74)
P2 rr =1t - —r+ D) —4rt =203 2% 41

z—2r)((r* +r—Da+2r° +r2 —r - 1).

P(x)
Q(x)

(rP4r—Dr+2r3+r2—r—1>0. (2)

(
= (r
= (r?
= (

Since z > 2r and clearly Q(x) > 0, we have > 0 if and only if

Since z > 2r and 72 +7r—1 > 0, (2) holds if and only if it holds for z = 2r ; that is,
2r(r?+r—1)+2r3+r2—r—1>00r 4r3+3r? =3r—1>0or 4r?+3r—-3—-1 > 0.

The function g(r) = 4r* + 3r — 3 — L is increasing on (0,00) and g(3) = -2 <
0,9(3) = ¢ > 0, s0it has only one root r and ro € (3, 2). Hence, rq is the Smallest
value of r Such that (2) holds for all z > 2r.

Furthermore, if we set r; = ‘/52_1, then

Ar3 4302 —3r —1 = dry (ri4r —1) =124 —142(r1 —1) = 2(r1 —1) = V5-3 < 0,

sory <1< §
4

In particular, (1) holds for all a,b > 0 such that ab = 72 if » > 1 and this completes

the proof of the lemma. B

Using this lemma, we now prove that for all a,b, c > 0 with abc = 7 |

1 1 1 3
>
1+a+a2+1+b+b2+1+c+02 T 1l4r40r2
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if and ouly if r > 1.

Necessity. Setting ¢ = TZ and ¢ = b = n in the given inequality where n is an
arbitrary natural number, and passing to the limit, we have

. 2 1 3
1= lim + > ,
n—oo \ 1+ n + n? 1_|_7_|-7 1+7r+7r2
which implies 72 +7r —2>0or (r+2)(r —1) > 0,s0 r > 1.
Sufficiency. Let a,b, c > 0 with abc = r3,r > 1. Without loss of generality, assume

that ¢ > b > ¢. Then ¢ > abc = 3, so ¢ > r. Set £ = vab. Then ¢ = ;—z and
x> ¢, 50 x>r > 1. Since ab = 22, we have, by the lemma, that

1 1 2
> .
1+a+a? + 1+b4+0b62 ~ 14+ +22
Hence, it suffices to prove that for any x and r with > r > 1, we have
2 1 3

> . 3
1+w+x2+1+ + I T I (3)
Let 5 5
D(z) = + - :
R T+ 5+ T4r+r?
Then
1 1 1 1
D = - — — _2( — ) 4
(=) I+ 54+ 14r+r? l+r+r2 14+z+a? @
_ r+r2—;—z—;—i 3 r4 a2 —r—1r? _ Aw) %)
S+ ()t a ) L
where
ol (@ —r?) +r2 (@' —r") 20 +a+r)(x—r
PR a=n .

x4 + 223 + 16 1+ +2?
(@ =) (ra? +r2(@2 + ) (22 + 2+ 1) = 2(x + 7+ 1) (z — r)(z* + r322 + r%)
(x* 4+ 22r3 +10) (22 + 2 + 1)

(7)
= o~ r)Blz) , (8)

(z*+ 223 +r9) (a2 + 2 + 1)

where
B(z) = (z +7)(2® + 2+ 1)(ra® + r2(2® +72)) — 2(x + r + 1) (2* + r32? + %)
=(re+r) (@ +r@E@? + )2+ +1) = 2@ +r+ 1) (@t + P2 +9)
= r—2)2" + (P42 —r =2zt + (r* =3+ 202 £ )2
+ (=t = 2?4+ (=208 5 e — 207 — 200 45
= (z —7r)E(z),
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where
E(x) = (r2 +r—2)x* + (2r3 + 3r® — 3r — 2)2® + (3r* + 23 — 2 — 1)2?

+ (4r° + 7t = 2% 4 (208 + 20° — ).

It then suffices to prove that E(z) > 0 for all z > r. Since

E(r)=r0+75 —2r* + 276 + 375 — 3r* — 293 + 398 4 205 —p* — 48
448 S — 2t 4 28 —2p® —

=T 4120 + 85 — 9pt — 443
=r 43 45 43 (r — 1)(9r +4)(r+1) >0

for » > 1 and since all the coefficients of E(z) are clearly nonnegative as well,
we conclude that E(x) > E(r) > 0 for all > r. Hence, B(x) > 0 and from (8)
A(x) > 0 and finally from (5) D(z) > 0, which establishes (3) and completes the
proof.

Editor’s comment. Perfetti’s solution was computer assisted and Pranesachar’s
solution used Maple.
3847, Proposed by Jung In Lee.

Prove that there are no distinct positive integers a, b, ¢ and nonnegative integer k
that satisfy the conditions

ab+k | ba-i—lc7 bc+k | Cb+k7 ca+k: | ac+k.

We present the solution by Joseph DiMuro.

We prove the stronger result that there are no distinct positive integers a, b, ¢ and
nonnegative real number k that satisfy the conditions

(Lb+k < ba-i—k’ bc+k < Cb+k, ca-i—k < a}c+k. (1)

Suppose (1) holds. Then from a®™* < b9+* we have
In(a®™*) <) or (b+k)Ina < (a+k)Inb,

o)

Ina Inb
<
a+k ~b+k

Similarly, from the other inequalities in (1), we deduce that

Inb Inc and Inc - Ina
b+k ~ c+k c+k " a+k
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