having an even number of circles (with 2k points on both the A and the B circles, and i running from 1 to 2k-1): the points A_{2k} , A_1 , B_1 , B_{2k} must also lie on a circle.

For the second claim we will see that the sides of the hexagon $C_1C_2C_3C_4C_5C_6$ are tangent to a conic whose foci are the centres, call them A and B, of the circles A_i and B_i ; by Brianchon's theorem, the lines joining opposite vertices of the hexagon, namely C_1C_4 , C_2C_5 , and C_3C_6 , must be concurrent. To this end, we wish to show that for each i, the unique conic with foci A and B that is tangent to the line C_iC_{i-1} (joining the centres of consecutive circles) coincides with the unique conic with those foci that is tangent to the line C_iC_{i+1} . Note that the conic will be an ellipse if the tangent C_iC_{i+1} misses the line segment AB; it is a hyperbola if the tangent intersects AB between A and B. (To avoid the line passing through A or B we should insist that none of the A_i lie on the circle containing the B_i , and vice versa.) The second claim thereby reduces to a theorem that seems as if it should have been known a century ago, for which it seems to be easier to find a proof than a reference. The editor J. Chris Fisher now poses this proof as problem 3945, which appears in this issue of Crux.

3846. Proposed by Arkady Alt.

Let r be a positive real number. Prove that the inequality

$$\frac{1}{1+a+a^2} + \frac{1}{1+b+b^2} + \frac{1}{1+c+c^2} \ge \frac{3}{1+r+r^2}$$

holds for any positive a, b, c such that $abc = r^3$ if and only if $r \ge 1$.

We present the proof by the proposer, modified and expanded by the editor.

We first prove the following lemma:

Lemma. Let r be a given positive number. Then

$$\frac{1}{1+a+a^2} + \frac{1}{1+b+b^2} \ge \frac{2}{1+r+r^2} \tag{1}$$

for any positive a and b with $ab = r^2$ if and only if $r \ge r_0$, where r_0 is the unique positive root of the equation $4x^3 + 3x^2 - 3x - 1 = 0$.

[Editor: Let $f(x) = 4x^3 + 3x^2 - 3x - 1$. Then f(0) = -1 < 0 and f(1) = 3 > 0, so f has a real root $r_0 \in (0, 1)$. By Rule of signs, r_0 is the only positive root.]

Proof. Note that if (1) holds for any positive a and b with $ab = r^2$, then

$$\lim_{a \to \infty} \left(\frac{1}{1+a+a^2} + \frac{1}{1+b+b^2} \right) = 1 \ge \frac{2}{1+r+r^2}$$

if and only if $r^2 + r - 1 \ge 0$, so $r \ge \frac{\sqrt{5} - 1}{2}$.

Crux Mathematicorum, Vol. 40(5), May 2014

Now, suppose a, b > 0 with $ab = r^2$, where $r \ge \frac{\sqrt{5} - 1}{2}$. Let x = a + b, then $x > 2\sqrt{ab} = 2r$, and

$$\begin{split} \frac{1}{1+a+a^2} + \frac{1}{1+b+b^2} - \frac{2}{1+r+r^2} \\ &= \frac{2+a+b+a^2+b^2}{1+a+b+ab+ab(a+b)+a^2+b^2+a^2b^2} - \frac{2}{1+r+r^2} \\ &= \frac{2+x+x^2-2r^2}{1+x+r^2+(r^2)x+x^2-2(r^2)+r^4} - \frac{2}{1+r+r^2} \\ &= \frac{x^2+x+2-2r^2}{x^2+r^2x+x-r^2+r^4+1} - \frac{2}{1+r+r^2} \\ &= \frac{P(x)}{Q(x)}, \end{split}$$

where $Q(x) = (x^2 + r^2x + x - r^2 + r^4 + 1)(1 + r + r^2)$ and by tedious computations together with synthetic division, we have :

$$\begin{split} P(x) &= (x^2 + x + 2 - 2r^2)(1 + r + r^2) - 2(x^2 + r^2x + x - r^2 + r^4 + 1) \\ &= (r^2 + r - 1)x^2 + (-r^2 + r - 1)x + 2(1 - r^2)(r^2 + r + 1) - 2(1 - r^2 + r^4) \\ &= (r^2 + r - 1)x^2 - (r^2 - r + 1)x - 4r^4 - 2r^3 + 2r^2 + r \\ &= (x - 2r)((r^2 + r - 1)x + 2r^3 + r^2 - r - 1). \end{split}$$

Since $x \ge 2r$ and clearly Q(x) > 0, we have $\frac{P(x)}{Q(x)} \ge 0$ if and only if

$$(r^2 + r - 1)x + 2r^3 + r^2 - r - 1 \ge 0.$$
 (2)

Since $x \ge 2r$ and $r^2 + r - 1 \ge 0$, (2) holds if and only if it holds for x = 2r; that is, $2r(r^2 + r - 1) + 2r^3 + r^2 - r - 1 \ge 0$ or $4r^3 + 3r^2 - 3r - 1 \ge 0$ or $4r^2 + 3r - 3 - \frac{1}{r} \ge 0$.

The function $g(r) = 4r^2 + 3r - 3 - \frac{1}{r}$ is increasing on $(0, \infty)$ and $g(\frac{1}{2}) = -\frac{5}{2} < 0$, $g(\frac{3}{4}) = \frac{1}{6} > 0$, so it has only one root r_0 and $r_0 \in (\frac{1}{2}, \frac{3}{4})$. Hence, r_0 is the smallest value of r such that (2) holds for all $x \ge 2r$.

Furthermore, if we set $r_1 = \frac{\sqrt{5}-1}{2}$, then

$$4r_1^3 + 3r_1^2 - 3r_1 - 1 = 4r_1(r_1^2 + r_1 - 1) - r^2 + r_1 - 1 + 2(r_1 - 1) = 2(r_1 - 1) = \sqrt{5} - 3 < 0,$$

so $r_1 < r_0 < \frac{3}{4}$.

In particular, (1) holds for all a, b > 0 such that $ab = r^2$ if $r \ge 1$ and this completes the proof of the lemma. \blacksquare

Using this lemma, we now prove that for all a, b, c > 0 with $abc = r^3$,

$$\frac{1}{1+a+a^2} + \frac{1}{1+b+b^2} + \frac{1}{1+c+c^2} \ge \frac{3}{1+r+r^2}$$

if and only if $r \geq 1$.

Necessity. Setting $c=\frac{r^3}{x^2}$ and a=b=n in the given inequality where n is an arbitrary natural number, and passing to the limit, we have

$$1 = \lim_{n \to \infty} \left(\frac{2}{1 + n + n^2} + \frac{1}{1 + \frac{r^3}{n^2} + \frac{r^6}{n^4}} \right) \ge \frac{3}{1 + r + r^2},$$

which implies $r^2 + r - 2 \ge 0$ or $(r+2)(r-1) \ge 0$, so $r \ge 1$.

Sufficiency. Let a,b,c>0 with $abc=r^3,r\geq 1$. Without loss of generality, assume that $a\geq b\geq c$. Then $c^3\geq abc=r^3$, so $c\geq r$. Set $x=\sqrt{ab}$. Then $c=\frac{r^3}{x^2}$ and $x\geq c$, so $x\geq r\geq 1$. Since $ab=x^2$, we have, by the lemma, that

$$\frac{1}{1+a+a^2} + \frac{1}{1+b+b^2} \ge \frac{2}{1+x+x^2}$$

Hence, it suffices to prove that for any x and r with $x \ge r \ge 1$, we have

$$\frac{2}{1+x+x^2} + \frac{1}{1+\frac{r^3}{r^2} + \frac{r^6}{r^4}} \ge \frac{3}{1+r+r^2}.$$
 (3)

(7)

Let

$$D(x) = \frac{2}{1+x+x^2} + \frac{1}{1+\frac{r^3}{m^2} + \frac{r^6}{m^4}} - \frac{3}{1+r+r^2}.$$

Then

$$D(x) = \frac{1}{1 + \frac{r^3}{x^2} + \frac{r^6}{x^4}} - \frac{1}{1 + r + r^2} - 2\left(\frac{1}{1 + r + r^2} - \frac{1}{1 + x + x^2}\right) \tag{4}$$

$$= \frac{r + r^2 - \frac{r^3}{x^2} - \frac{r^6}{x^4}}{(1 + \frac{r^3}{x^2} + \frac{r^6}{x^4})(1 + r + r^2)} - \frac{x + x^2 - r - r^2}{(1 + r + r^2)(1 + x + x^2)} = \frac{A(x)}{1 + r + r^2}, (5)$$

where

$$A(x) = \frac{x^2 r \left(x^2 - r^2\right) + r^2 \left(x^4 - r^4\right)}{x^4 + x^2 r^3 + r^6} - \frac{2 \left(1 + x + r\right) \left(x - r\right)}{1 + x + x^2} \tag{6}$$

$$=\frac{(x^2-r^2)(rx^2+r^2(x^2+r^2))(x^2+x+1)-2(x+r+1)(x-r)(x^4+r^3x^2+r^6)}{(x^4+x^2r^3+r^6)(x^2+x+1)}$$

 $=\frac{(x-r)B(x)}{(x^4+x^2r^3+r^6)(x^2+x+1)},$ (8)

where

$$B(x) = (x+r)(x^2+x+1)(rx^2+r^2(x^2+r^2)) - 2(x+r+1)(x^4+r^3x^2+r^6)$$

$$= (rx+r^2)(x^2+r(x^2+r^2))(x^2+x+1) - 2(x+r+1)(x^4+r^3x^2+r^6)$$

$$= (r^2+r-2)x^5+(r^3+2r^2-r-2)x^4+(r^4-r^3+2r^2+r)x^3$$

$$+ (r^5-r^4-r^3+r^2)x^2+(-2r^6+r^5+r^4)x-2r^7-2r^6+r^5$$

$$= (x-r)E(x),$$

Crux Mathematicorum, Vol. 40(5), May 2014

where

$$E(x) = (r^2 + r - 2)x^4 + (2r^3 + 3r^2 - 3r - 2)x^3 + (3r^4 + 2r^3 - r^2 - r)x^2 + (4r^5 + r^4 - 2r^3)x + (2r^6 + 2r^5 - r^4).$$

It then suffices to prove that $E(x) \geq 0$ for all $x \geq r$. Since

$$\begin{split} E(r) &= r^6 + r^5 - 2r^4 + 2r^6 + 3r^5 - 3r^4 - 2r^3 + 3r^6 + 2r^5 - r^4 - r^3 \\ &\quad + 4r^6 + r^5 - 2r^4 + 2r^6 - 2r^5 - r^4 \\ &= r^7 + 12r^6 + 8r^5 - 9r^4 - 4r^3 \\ &= r^7 + 3r^6 + 4r^5 + r^3(r-1)(9r+4)(r+1) \ge 0 \end{split}$$

for $r \geq 1$ and since all the coefficients of E(x) are clearly nonnegative as well, we conclude that $E(x) \geq E(r) > 0$ for all $x \geq r$. Hence, $B(x) \geq 0$ and from (8) $A(x) \geq 0$ and finally from (5) $D(x) \geq 0$, which establishes (3) and completes the proof.

Editor's comment. Perfetti's solution was computer assisted and Pranesachar's solution used Maple.

3847. Proposed by Jung In Lee.

Prove that there are no distinct positive integers a, b, c and nonnegative integer k that satisfy the conditions

$$a^{b+k} \mid b^{a+k}, \quad b^{c+k} \mid c^{b+k}, \quad c^{a+k} \mid a^{c+k}.$$

We present the solution by Joseph DiMuro.

We prove the stronger result that there are no distinct positive integers a, b, c and nonnegative real number k that satisfy the conditions

$$a^{b+k} \le b^{a+k}, \quad b^{c+k} \le c^{b+k}, \quad c^{a+k} \le a^{c+k}. \tag{1}$$

Suppose (1) holds. Then from $a^{b+k} \leq b^{a+k}$, we have

$$\ln(a^{b+k}) < \ln(b^{a+k})$$
 or $(b+k) \ln a < (a+k) \ln b$,

so

$$\frac{\ln a}{a+k} \le \frac{\ln b}{b+k}.$$

Similarly, from the other inequalities in (1), we deduce that

$$\frac{\ln b}{b+k} \le \frac{\ln c}{c+k}$$
 and $\frac{\ln c}{c+k} \le \frac{\ln a}{a+k}$.